INTEGRAL UNIVERSITY, LUCKNOW

SYLLABUS & EVALUATION SCHEME

for

M.TECH. BIOTECHNOLOGY

(with effect from 2020-2021)

Integral University M. Tech. Biotechnology (with effect from Session 2020-2021)

1st Year

1st Semester

S.	Course	Subject	Subject	Pe	eriod	ls ai	nd	Eval	uatior	n Scheme	e	Subject
No.	Category	Code			Cre	dits	ts Sessional (CA)			CA)	(ESE)	Total
				L	Τ	P	С	СТ	TA	Total		
1	DC	BE-501	Biochemistry	2	1	0	3	40	20	60	40	100
2	DC	BE-502	Bioanalytical Techniques	3	1	0	4	40	20	60	40	100
3	DC	BE-503	Microbial Genetics and Technology	2	1	0	3	40	20	60	40	100
4	DC	BE-504	Cell and Molecular Biology	3	1	0	4	40	20	60	40	100
5	DC	BE-505	Bioprocess Engineering	3	1	0	4	40	20	60	40	100
6	DC	BE-506	Biochemistry and Microbiology Lab	0	0	6	3	40	20	60	40	100
Total			·	13	5	6	21	240	120	360	240	600

BIOCHEMISTRY BE-501

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: This course is designed to introduce the organic structure of living systems mainly dealing with biomolecules like carbohydrates, proteins, lipids, enzymes and their metabolism. This course will lay the foundation for other advanced courses like physiology, cell biology, molecular biology and metabolic engineering.

UNIT I	Carbohydrates	8
	Structure and properties of mono, di, oligo and polysaccharides;	
	complex carbohydrates, TCA cycle, glycolysis, gluconeogenesis,	
	pentose phosphate shunt. Respiratory chain, ATP cycle, energy rich	
	compounds.	
UNIT II	Lipids	8
	Structure and properties of fatty acids, Glycerolipids, phospholipids,	
	sphingolipids, Glycolipids, steroids. Biosynthesis and degradation of	
	fatty acids and cholesterol.	
UNIT III	Proteins	8
	Structure and properties of amino acids, peptides, proteins and	
	conjugated proteins. Urea cycle. Biosynthesis and degradation of amino	
	acids and proteins.	
UNIT IV	Nucleic Acids	8
	Structure and properties of purines, pyrimidines, nucleosides,	0
	nucleotides, polynucleotides. Ribonuclic acid and deoxyribonucleic	
	acids, nucleoprotrein complexes. Biosynthesis and degradation of	
	purines, pyrimidines and nucleic acids.	

Text Books:

- 1. Nelson & Cox, Lehninger's Principles of Biochemistry, 5th Edition
- 2. Harpers Biochemistry, McGraw Hill
- 3. Stryer, Biochemisrty, Freeman.
- 4. Donald Voet, J.G.Voet, Biochemistry, John Willey. Voet & Voet, "Biochemistry".

BIOANALYTICAL TECHNIQUES BE-502

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Course Objective: The paper will help students to acquaint with basic instrumentation, principle and procedure of various sophisticated instruments like HPLC, FACS, GLC and NMR etc. This will enable the students to implement the use of these techniques in biological research and in discovering new products/compounds.

UNITI	Centrifugation	8
	Centrifugation: types of rotors; principles and application of	
	differential, zonal, density gradient and ultra-centrifugation.	
UNITII	Electrophoresis and Chromatography	8
	Electrophoresis: principles and applications of moving boundary and zone electrophoresis including gel electrophoresis (PAGE, starch, agarose and Pulse Field gel Electrophoresis), isoelectric focusing, isotachophoresis; Chromatography: Adsorption, partition, ion-exchange, reverse phase, covalent, gel filtration, affinity, gas chromatography, HPLC and FPLC.	
UNITIII	Spectroscopy and Microscopy	8
	Basic Principles of Spectroscopy: UV-visible, atomic absorption, ESR, NMR, IR, mass and plasma emission spectroscopy. Microscopy: Simple, compound, phase contrast, electron (transmission, scanning) and confocal microscopy.	Ū
UNITIV	Radiotracer Technology	8
	Radiotracer technology, use of radioactive isotopes in biological system; autoradiography, Geiger-Muller counter, Liquid scintillation counter; CD;ORD;X-ray crystallography; Biosensors; Flow cytometer; Freeze drying; Amino acid analyzer.	
UNITV	Environmental Analytical Techniques	8
	Analysis of Biomass; measurement of dry weight and biomass composition; Measurement of BOD and COD in Waste-Waters; Gas Analysis for O ₂ and CO ₂ ; Flow injection analysis.	

- 1. Wilson K, Walker J, Walker JM, "Principles and Techniques of Practical Biochemistry".
- 2. Sambrook J, Russell DW, Sambrook J, "Molecular Cloning: A Laboratory Manual".
- 3. William M, O'Leary Robert, Dony Wu,"Practical Handbook of Microbiology".
- 4. Brown, TA, "Gene cloning: An introduction".
- 5. Cantor CR, Schimme IPR, "Biophysical Chemistry".
- 6. Lehninger A, "Principles of Biochemistry".
- 7. Voet & Voet, "Biochemistry".

MICROBIAL GENETICS & TECHNOLOGY

BE-503

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The course is designed to understand the basics of microbial growth, reproduction, methods of genetic exchange. It will also focus on the media design, modes of operation of fermenter for large scale biomass and product formation and industrial applications of microbes

UNIT I	Microbial nutrition and growth	8
	Principle of microbial nutrition, formulation of culture media, selective media, factors influencing the choice of various carbon and nitrogen sources, vitamins, minerals, precursors & antifoam agents; Importance of pH; Starter culture; Principles of media and air sterilization; kinetics of thermal death of cells & spores, design of batch and continuous thermal sterilizer, sterilization of air, design of filter; Radiation, chemical and steam sterilization	
UNIT II	Microbial growth kinetics under different culture systems	8
	Kinetics of microbial growth, substrate utilization and product formation: growth phases of a batch culture, synchronous culture, determination of kinetic parameters by batch, fed batch and continuous culture; Analysis of chemostat performance. Kinetics of growth & product formation by filamentous organisms; Role of maintenance and endogenous metabolism in substrate utilization & growth; structured models: Compartmental models; Gaden's and Deindoerfer's classifications	
UNIT III	Applied Microbial Genetics	8
	Horizontal gene transfer (Conjugation, transduction and transformation), Complementation, Molecular recombination, Mapping of bacterial genes; Genetic and physical maps; Replication of RNA tumor viruses	
UNIT IV	Microbial Technology	8
	Isolation, maintenance and preservation of industrial strains. Strain improvement, screening and selection of industrially important microbes. Large scale production and commercial applications of enzymes: proteases and amylases ; solvents and antibiotics: acetic acid, ethanol, acetobutanol, penicillin and streptomycin	

- 1. Bailey J E and Ollis DF, "Biochemical Engineering fundamentals".
- 2. Stanbury PF, Whitaker A, "Principles of Fermentation Technology".
- 3. "Principles of Cell Energetics": BIOTOL series, Butterworth Heinemann.
- 4. Moser A, "Bioprocess Technology Kinetics & Reactors".
- 5. Schugerl K, "Biotechnology" Vol.4 Meaning Modeling and Control.
- 6. Atkinson B, Mavituna F, "Biochemical Engineering and Biotechnology Handbook".
- 7. Goodenough U, "Genetics".
- 8. Swanson G P, Mertz & Young, "Cytogenetics".
- 9. Luria & Darnell, "General Virology".
- 10. Strickberger MW, "Introduction to Genetics".
- 11. Pirt SJ, "Principles of Microbe and Cell Cultivatio

CELL & MOLECULAR BIOLOGY BE-504

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Objective: The objective of the course is to learn and understand the fundamentals of molecular biology and cellular signalling. The application of the course focuses on fundamental concepts and their implications on disease processes.

UNIT I	DNA replication	8
	DNA replication: Initiation, elongation and termination; Roles of	
	DNA Polymerase I, II, III, DNA ligase, DNA gyrase, Topoisomerases,	
	Primase, Helicase, HD protein; Okazaki fragments; RNA primers;	
	Repair by DNA polymerase I and DNA ligase; Eukaryotic replication;	
	Regulation of prokaryotic and eukaryotic replication; Fidelity of	
	replication End Replication and Role of Telomerase.	
UNIT II	Transcription	8
	Transcription: Prokaryotic and eukaryotic transcription: Initiation,	
	elongation and termination; DNA - dependent RNA polymerase (RNA	
	Pol in prokaryotes and RNA Pol I, II, III in eukaryotes): Physical	
	properties, subunit structure; Sigma cycle; Promoter; Enhancer and	
	other regulatory elements; Transcription factors; RNA - dependent	
	DNA polymerase; Reverse transcription; Post- transcriptional /	
	Cotranscriptional processing: Maturation of rRNA, mRNA, tRNA; 5`	
	capping; RNA splicing; Alternative splicing; RNA editing; Poly A tail	
	formation; Regulation of transcription in both prokaryotes and	
	eukaryotes. mRNA stability, Nuclear export of mRNA and its	
	regulation, Inhibitors of transcription and their mechanism of action.	
UNIT III	Translation and Gene Regulation	8
	Genetic code: Evidence for a triplet code; Properties of the code sequential;	
	Ubiquitous (almost); Degenerate; Wobble hypothesis, Nonsense codons;	
	Sense codons; Translation: Activation of amino acids; Charging of tRNA;	
	Adapter role of tRNA; Amino acyl tRNA synthetase; Initiation, elongation	
	and termination of translation in prokaryotes and eukaryotes; A, P and E sites	
	of ribosomes; Roles of initiation, elongation and release factors; Ribosome	
	recycling; Inhibitors of translation, Post - translational processing; Protein	
	targeting: targeting of secretory proteins - targeting to endoplasmic	
	membrane, golgi complex, lysosomes and plasma membrane; Protein	
	degradation Ubiquitin-Proteosome Pathway, Fidelity of translation, Concept	
	of operon: lac and trp operons, Attenuation, RNA Interference, Chromosome	
	remodeling and Histone modification.	
UNIT IV	DNA mutation and Repair	8

	Mutation: Spontaneous, induced; Chemical and physical mutagens; Non sense mutation; Missense mutation; Frame shift mutation; Suppressor mutation; Different methods of DNA repair and SOS response; Methods to assess genotoxicity Transposition.	
UNIT V	Cell Signaling	8
	Cell division; Cell cycle and role of cyclin dependent kinases in its regulation; Cell - cell interaction, Extracellular Matrix, Structure and organization of actin and myosin; Microtubules and Intermediary filaments; Organization and function. Apoptosis and factors governing apoptosis; Basics of signal transduction: Synthesis and regulation of signaling molecules, G protein and phospholipids signaling, cyclic nucleotides, role of calcium in signaling, protein kinases as primary elements in signaling.	

- 1. Lewin, "Genes".
- 2. Freifelder DM, "Molecular Biology".
- 3. Brown T A, "Genomes".
- 4. Watson J D, "Molecular Biology of the Gene".
- 5. Twyman R M, "Advanced Molecular Biology".
- 6. Brown T A, "Gene cloning: An introduction".
- 7. Old & Primrose, "Principles of Gene Manipulation".
- 8. Primrose S B, "Molecular Biotechnology".
- 9. Cibelli J B, Robert P, Keith L, Michael C, West D, "Principles of Cloning".
- 10. Voet&Voet, "Biochemistry
- 11. Stryer L, "Biochemistry".

BIOPROCESS ENGINEERING

BE-505

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Objective: Students are made capable of designing protocols for industrial scale production of medicinally and commercially important metabolites. Students can develop better understanding and perform more efficiently in commercial as well as research areas associated with medical research, food processing, agriculture, pharmaceutical development, waste management, and numerous other fields of science and industry.

UNIT I	Introduction to Bioprocess and Engineering calculations	8
	Role of process engineering principles in biotechnological industries,	
	Current scenario of biotechnological industries, Dimensional analysis,	
	Dimensionless numbers and their significance in Heat, Mass and	
	Momentum transfer, Method/Process validation.	
UNIT II	Material and Energy Balances	8
	Steady state and unsteady state Material and Energy Balance calculations.	
UNIT III	Fluid mechanics	8
	Fluids vs solids, Fluid statics and applications including manometer;	
	Mass and energy balances in fluid flow; Bernoullis equation, its	
	corrections and applications including pump work; Newton's law of	
	viscosity; Measurement of viscosity of fermentation broths; flow curves	
	for Non- Newtonian fluids and examples from bioprocess fluids;	
	Pressure drop due to skin friction; Significance of friction factor and	
	Reynold's number; Boundary layer theory and form friction; Pressure	
	drop due to form friction; Flow past immersed bodies and drag	
	coefficients; Pressure drop in flow through packed beds; Fluidization	
	and Pressure drop across fluidized beds; Flow machinery and control: overview of valves and pumps.	
UNIT IV	Heat transfer	8
	Heat transfer requirements of microbial cultivations including	
	correlations for the determination of heat transfer coefficients; Models	
	of heat transfer and examples; Fourier's law of heat conduction and	
	analogy with momentum transfer, heat transfer through a cylindrical	
	pipe wall; Convection and concept of heat transfer coefficient,	

	application of dimensional analysis to heat transfer from pipe to a flowing fluid; Thermal boundary layer and Prandtl number; Overall heat transfer coefficient; Correlations for heat transfer coefficients in natural and forced convection; Overview of heat exchangers and concept of LMTD.	
UNIT V	Mass transfer Diffusion and mass transfer: Fick's law of diffusion; Analogy with momentum and energy transport; Diffusivities of gases and liquids; Fundamentals of mass transfer: Theories of mass transfer, concept of mass transfer coefficient, correlation for mass transfer coefficients, Oxygen requirements of microbial culture: oxygen mass transfer fundamentals, oxygen transfer and oxygen demand, oxygen transfer by aeration and agitation, determination of oxygen transfer coefficient by various methods including sulfite oxidation, dynamic gassing out and oxygen balance methods, factors affecting oxygen transfer coefficients.	8

- 1. McCabe WL, Smith JC, Harriot P, "Unit operations of Chemical Engineering", Mc Graw-Hill.
- 2. Cussler EL, "Diffusion" Cambridge University Press.
- 3. Doran PM, "Bioprocess Engineering Principles", Academic Press.
- 4. Pirt SJ, "Principles of Microbe and Cell Cultivation".

BIOCHEMISTRY & MICROBIOLOGY LAB BE-506

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	0	0	6	3

Objective: The lab is designed to train the students in basic and some advanced techniques of Biochemistry like isolation, purification, and estimation of biomolecules. It also deals with microbial techniques of isolation, purification and maintenance of microbial cultures.

Microbiology:

- 1. Maintenance and identification of microorganisms.
- 2. Biochemical Characterization of microbes
- 3. Analysis of various pigments in cyanobacteria
- 4. Standardization of growth curve of different microbes

Biochemistry:

- 5. Electrophoresis in Agarose and SDS gels
- 6. Membrane separation of proteins
- 7. Extraction of phytochemicals and thin layer chromatography
- 8. Estimation of carbohydrates-glucose and starch
- 9. Estimation of proteins and nucleic acid

Reference:

- 1. J.Jayaraman, Lab Manual in Biochemistry, Wiley Eastern LTd
- 2. Bergey's Journal of Determinative Biotechnology Edn
- 3. Collins and Lyne, Microbiological Methods, Butterworths, Singapore, 5thEd.
- 4. Plummer, An Introduction to Practical Chemistry, Tata-McGraw Hill, New Delhi, 3rd Ed.

Integral University M. Tech. Biotechnology (with effect from Session 2020-2021)

1st Year

2nd Semester

S.	Course	Subject		Pe	erio	ds a	nd	Evalu	ation S	cheme		Subject																
No.	Category	Code	Subject		Cre	dits	lits Sessional (CA)				ESE	Total																
	87			L	Τ	P	С	СТ	TA	Total																		
1	DC	BE-507	Fermentation Technology	3	1	0	4	40	20	60	40	100																
2	DC	BE-508	Downstream Processing	2	1	0	3	40	20	60	40	100																
3	DC	BE-509	Genetic Engineering	2	1	0	3	40	20	60	40	100																
4	DC	BE-510	Enzyme Engineering	3	1	0	4	40	20	60	40	100																
		BE-512	Nanobiotechnology		1				40 20	20 60	40																	
5		BE-513	Plant Cell Technology	- 2		0	3	3 40				100																
5	DE	BE-514 Pharmaceutical Biotechnology	2		2	2	2		2			2	2	2	2		1	0	U	0		U	U	3	40	20	00	40
		BE-515	Bioreactor Engineering																									
6	DC	BE-511	Fermentation Technology & Genetic Engineering Lab	0	0	6	3	40	20	60	40	100																
7	DC	BE-516	Applied Microbiology and Biotechnology	2	1	0	0	40	20	60	40*	100*																
	•		Total	14	6	6	20	240	120	360	240	600																

* A zero-credit foundation course. Candidate has to pass the course by securing at least 50% marks

FERMENTATION TECHNOLOGY BE-507

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Objective: The objectives of this course are to develop the understanding of ideal and non-ideal bioreactors, introduce concepts of heterogeneous reaction system, Develop understanding of strategies for scale-up of bioreactor, built concepts of control and monitoring in bioreactors.

UNIT I	Analysis of Ideal Bioreactors	
	Analysis of ideal bioreactors: The ideal batch reactor, Continuous	0
	Stirred Tank Reactor (CSTR), series of CSTRs, turbidostat, chemostat,	8
	fed batch, plug flow reactors	
UNIT II	Heterogeneous Reaction Systems	
	Heterogeneous reaction systems: Zero order and First order kinetics of	
	concentration profile with reference to spherical geometry and other	8
	shapes, Effectiveness factor, External and internal mass transfer,	
	General comments on heterogeneous reactions in bioprocessing.	
UNIT III	Monitoring, Control and Modelling of Bioreactors	
	Modeling, analysis and design of bioreactor; Control of bioreactors,	
	case studies; Solid state fermentation. Overview of methods for online	0
	and offline monitoring of bioreactors: bioprocess control	8
	methodologies; Analysis of alternate bioreactor configurations including	
	cell-recycle, air-lift, and immobilized-cell bioreactors.	
UNIT IV	Fermentative Production of Metabolites	
	Media for industrial fermentation; Large scale production of amylase,	8
	acetic acid, ethanol, penicillin and L-Lysine.	
UNIT V	Scale-up of Bioreactor	
	Scale-up of microbial bioreactors: Various approaches to scale-up	Ø
	including regime analysis and scale-down; Scale-up methods by	8
	currently used rules-of-thumb viz. constant P/V, KLa etc.	

- 1. Fogler, H. S. (1999). Elements of chemical reaction engineering.
- 2. Doran, P. M. (1995). Bioprocess engineering principles. Academic press.
- 3. Bailey, J. E., & Ollis, D. F. (1976). Biochemical engineering fundamentals. *Chemical Engineering Education*.
- 4. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). *Principles of fermentation technology*. Elsevier

DOWNSTREAM PROCESSING BE-508

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: To impart to the students the knowledge of various separation and purification techniques and enable them to design these processes.

UNIT I	Introduction to Bioprocess and Primary isolation methods	8
	Overview of a bioprocess including upstream and downstream	
	processing; Intracellular and extracellular product recovery: cell	
	disruption and extraction. Primary isolation methods including	
	separation of particulate by filtration, centrifugation, settling,	
	sedimentation, decanting, microfiltration and membrane based method;	
	Solvent extraction, sorption, precipitation, ultrafiltration and Reverse	
	osmosis.	
UNIT II	Purification methods	8
	Fractional precipitation, electrophoresis, chromatography, adsorption,	
	product polishing, crystallization, drying.	
UNIT III	New and Emerging techniques	8
	Pervaporation, Super liquid extraction, Foam based separation,	
	Lyophilization, High Throughput Screening.	
UNIT IV	Effluent Treatment	8
	Aerobic and anaerobic water treatment processes: activated sludge,	
	trickling filter, fluidized expanded bed reactor, Upflow anaerobic sludge	
	blanket reactor.	

- 1. Roger G. Harrison, Paul Todd, Scott R. Rudge, Demetri P. Petrides, Bioseparations Science and Engineering, Oxford University Press
- **2.** B.Shivshankar, Bioseparations: Priniples and Techniques, Eastern Economy Edition, PHI Learning Pvt. Ltd., Publishing House, New Delhi, 2012
- **3.** Bioseparation & bioprocessing (2nd Ed.) 2-Volume set, Ed SUBRAMANIAN Ganapathy, Wiley-VCH, (09-2007)
- 4. P.A. Belter, E.L. Cussler and Wei-Shou Hu., Bioseparations-Downstream Processing for Biotechnology, WileyInterscience Publication, 1988.
- 5. Separation and purification techniques in biotechnology, Fredreich Dechow, 1989

GENETIC ENGINEERING BE-509

Pre-requisite	Co-requisite	L	Т	Р	С
Molecular Biology	None	2	1	0	3

Objective: The course is designed to make the students understand the concept and basic steps in gene cloning, to acquaint them with various vectors and enzymes used in recombinant DNA technology, transformation and screening techniques. They will also be acquainted with modern techniques such as PCR technology, Real-Time PCR, Site-directed mutagenesis, Antisense RNA technology and RNA interference.

.

UNIT I	Enzymes used in Genetic Engineering	8
	Types of restriction enzymes, Nomenclature, Isoschizomers, Neoschizomers, Heterohypekomers, DNA digestion, Restriction mapping; Other enzymes used in Genetic Engineering: Alkaline phosphatase, DNA ligase, Reverse transcriptase, DNA Polymerase, Polynucleotide kinase, DNase, RNase, Terminal deoxynucleotidyl transferase, Taq polymerase, Topoisomerase.	
UNIT II	Cloning vectors	8
	Cloning vectors viz. Plasmids, λ phage, M13 phages, Yeast cloning vectors, Plant and animal viruses, Cosmids, Phagemids, Phasmids, Ti plasmid based vectors; Stringent and relaxed plasmids; Cloning strategies used with different vectors; Expression vectors; Linkers, Adaptors, Homopolymer tailing.	
UNIT III	Transformation	8
	Transformation of host cells, chemical induction, in vitro packaging, Agrobacterium mediated transformation, microprojectile bombardment, electroporation, and microinjection; Genomic and cDNA library construction; Subtractive hybridization.	
UNIT IV	Techniques in r-DNA Technology	8
	Techniques in r-DNA Technology: DNA sequencing; PCR, Variants of PCR, Cloning of PCR product, RACE, Real-Time PCR; Site-directed mutagenesis; Antisense RNA technology; RNA interference; Cosuppression, Molecular markers: RFLP, RAPD, AFLP, EST. Selectable markers, Reporter genes, Preparation of probes, Colony hybridization, Southern hybridization, Northern hybridization, Dot	

blots, Western blotting, Public concerns related to recombinant DNA	
technology; Safety guidelines of rDNA research.	

- 1. Old RW, and Primrose SB, Principles of Gene Manipulation, Blackwell Scientific Pub.
- 2. Lewin B, "Genes VIII".
- 3. Winnecker EL, "From Genes to Clones".
- 4. Freifelder DM, "Molecular Biology".
- 5. Brown TA, "Genomes".
- 6. Watson JD, "Molecular Biology of the Gene".
- 7. Twyman RM, "Advanced Molecular Biology".
- 8. Brown TA, "Gene cloning: An introduction".
- 9. Old & Primrose, "Principles of Gene Manipulation".
- 10. Primrose SB, "Molecular Biotechnology".
- 11. Cibelli JB, Robert P, Keith L, Michael C, West D, "Principles of Cloning".
- 12. Voet & Voet, "Biochemistry".
- 13. Voet & Voet, "Biochemistry".

ENZYME ENGINEERING BE-510

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Objective: To enable the students with the know-how of designing enzymatic processes and reactors, understanding enzyme kinetics, understanding and designing immobilization process and the basics of enzymatic reactions in organic media.

- 1. Lee JM, "Biochemical Engineering", Prentice Hall.
- 2. Lehninger A, "Principles of Biochemistry".
- 3. Vieth WR, "Design and Analysis of immobilized Enzyme Flow Reactors".
- 4. Stryer L, "Biochemistry".
- 5. Voet, Voet, "Biochemistry".
- 6. Shuler, "Bioprocess Engineering".
- 7. Fersht A, "Enzyme Structure and Mechanism".
- 8. Sigman DS, Sigman PS, "The Enzymes: Mechanisms of Catalysis".
- 9. Palmer T, "Enzymes".
- 10. Dixon, Webb, "Enzymes".
- 11. Andres Illanes, "Enzyme Biocatalysis: Principles and applications"
- 12. Vladimir Leskovac, "Comprehensive Enzyme Kinetics"

FERMENTATION TECHNOLOGY & GENETIC ENGINEERING LAB BE-511

L T P C 0 0 6 3

Objective: The lab is designed to train the students in basic and some advanced techniques of fermentation and Genetic Engineering.

- 1. Immobilization (calcium alginate/ polyacrylamide/glutaraldehyde) of whole cells and enzymes.
- 2. Organic acid/ alcohol/ enzyme production through fermentation, estimation of product, its separation and its purification
- 3. Design and scale-up of fermentation parameters
- 4. Isolation of plasmid/ phage and plant/ animal (genomic) DNA.
- 5. Agarose gel electrophoresis, visualization of DNA on gels and analysis of isolated DNA.
- 6. Amplification of DNA (using PCR) and restriction digestion.
- 7. RAPD to study biodiversity.
- 8. Competent cell preparation, transformation, ligation and screening of transformants.
- 9. Quantitative estimation, absorption spectra and Tm determination of DNA.
- 10. Blotting Techniques: Southern/ Northern/ Western Blot Techniques.

NANOBIOTECHNOLOGY BE-512

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: Use knowledge of nano science and mathematics to follow protocols, conduct science or engineering procedures, fabricate products, make conclusions about results, troubleshoot, discover and independently seek out innovations in the rapidly changing field of nanotechnology. Compile and analyze data and draw conclusions at the nano level.

UNIT I	Nanoscales	8		
	What is meant by Nanoscale - Nanoscale Processes - Physical and			
	Chemical Properties of Materials in the Nanoscales - Nanoscale			
	Measurements.			
UNIT II	Properties and measurements of nanomaterials	8		
	Optical Properties – Absorption and Fluroscence – Microscopy			
	measurements - SEM -TEM - AFM and STM. Confocal and TIRF			
	Imaging			
UNIT III	Nanobiology			
	Properties of DNA and motor proteins – Measurements of Conductivity			
	of DNA nanowires and angular properties of motor Lessons from			
	Nature on making nanodevices			
UNIT IV	Bioconjugation of nanomaterials to biological molecules	8		
	Reactive Groups on biomolecules (DNA & Proteins) - Conjugation to			
	nanoparticles (ZnS- Fe3O4) - Uses of Bioconjugated Nanoparticles.			
	NANO DRUG DELIVERY: Various Drug Delivery Systems – aerosol -			
	Inhalants - Injectibles - Properties of Nanocarriers - Efficiency of the			
	Systems.			

- 1. Nanobiotechnology: Concepts, Applications and Perspectives, Christof M. Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley-VCH; 1 edition, 2004.
- 2. Nanobiotechnology: BioInspired Devices and Materials of the Future by Oded Shoseyov and Ilan Levy, Humana Press; 1 edition 2007.
- Nanobiotechnology Protocols (Methods in Molecular Biology) by Sandra J Rosenthal and David W. Wright, Humana Press; 1 edition, 2005.

PLANT CELL TECHNOLOGY BE-513

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The objective of the course is to make students aware of the basic concepts of plant tissue culture. It deals with the initiation and maintenance of different types of cultures and genetic engineering techniques. The concepts of molecular markers and their applications are also being taught.

UNIT I	Introduction to Plant tissue culture	8
	Totipotency; Regeneration of plants; Different types of culture media;	
	Nutritional components of culture media; Regulation of cell	
	differentiation; Types of culture: callus, suspension, organogenesis,	
	somatic embryogenesis, micropropagation.	
UNIT II	Types of plant cell cultures	8
	Isolation, purification and culture of protoplasts; Protoplast fusion and	
	somatic hybridization; Selection systems for somatic hybrids / cybrids;	
	Production of haploid plants: anther, pollen culture and ovule culture;	
	Induction of mutation; Somaclonal variation; Production of disease free	
	plants (meristem culture).	
UNIT III	In vitro Production of secondary metabolites	8
	Production of secondary metabolites by plant cell cultures; batch and	
	continuous cultures. Biotransformation using plant cell cultures;	
	Bioreactor system and models for mass cultivation of plant cells, hairy	
	root culture.	
UNIT IV	Genetic transformation in plants and molecular markers	8
	Genetic transformation methods for production of transgenic plants:	
	Microprojectile bombardment, microinjection and electroporation.	
	Detailed mechanism of Agrobacterium mediated genetic transformation;	
	Applications of transgenic plants; Reporter genes; Selectable markers.	
	Genetic engineering-Safety, social, moral and ethical considerations.	
	Molecular Markers: RFLP, RAPD, AFLP, microsatellites, SCAR	
	(sequence characterized amplified regions) and SSCP (single strand	
	conformational polymorphism).Molecular Markers: RFLP maps, RAPD	
	maps, STS, microsatellites, SCAR (sequence characterized amplified	
	regions), SSCP (single strand conformational polymorphism), AFLP,	
	ESTs, QTL, map based cloning, molecular marker assisted selection.	

- 1. Chawla HS, "Plant Biotechnology: A Practical Approach".
- 2. Slater A, Scott NW, Fowler MR "Plant Biotechnology: The Genetic Manipulation of Plants".
- 3. Dixon RA, Gonzales RA, "Plant Cell Culture: A Practical Approach".
- 4. Mantell SH, Matthews JA, McKee RA, "Principles of Plant Biotechnology: An Introduction to Genetic Engineering in Plants".
- 5. Stafford A, Warren G, "Plant Cell and Tissue Culture (Biotechnology Series)".
- 6. Brown TA, "Gene cloning: An Introduction".
- 7. Old, Primrose, "Principles of Gene Manipulation".
- 8. Bhojwani SS, Razdan, "Plant Tissue Culture".

PHARMACEUTICAL BIOTECHNOLOGY BE-514

Pre-requisite	Co-requisite	L	Т	Р	С
-	-	2	1	0	3

Objective: To equip students with the know-how of various pharmaceutical products and processes, and also with the applications of biotechnology in the pharmaceutical sector.

UNIT I	Introduction	8
	Pharmaceutical industry & development of drugs; types of therapeutic	
	agents and their uses; economics and regulatory aspects.	
UNIT II	Drug Action, Metabolism and Pharmacokinetics	8
	Mechanism of drug action; physico-chemical principles of drug	
	metabolism; radioactivity; pharmacokinetics.	
UNIT III	Chemotherapeutics	8
	Chemotherapy for bacterial, fungal, viral infections, drugs acting on	
	protozoal infection, malarial infection and helminth parasites. Cancer	
	chemotherapy, Drug interactions.	
UNIT IV	Principles of Drug Manufacture; Biopharmaceuticals	8
	Compressed tablets; dry and wet granulation; slugging or direct	
	compression; tablet presses; coating of tablets; capsule preparation; oral	
	liquids – vegetable drugs – topical applications; preservation of drugs;	
	analytical methods and other tests used in drug manufacture; packaging	
	techniques; quality management; GMP. Biopharmaceuticals: Various	
	categories of therapeutics like vitamins, laxatives, analgesics,	
	contraceptives, hormones	

References Books :

- 1. Gareth Thomas. Medicinal Chemistry. An introduction. John Wiley. 2000.
- 2. Katzung B.G. Basic and Clinical Pharmacology, Prentice Hall of Intl. 1995

BIOREACTOR ENGINEERING BE-515

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The objective of the course is to develop the concepts of ideal and non-ideal bioreactor design, residence time distribution in ideal and non-ideal bioreactors.

UNIT I	Introduction to reactor design Introduction; General design information; Design considerations for maintaining sterility of process streams and process equipments; piping and instrumentation; materials of construction for bioprocess plants. Flow injection analysis for measurement of substrates, product and other metabolites.	8
UNIT II	Analysis of Reactors Bioreactors for submerged liquid fermentation of microbial cells in: batch reactors - Calculation of batch time, Non-ideality; in semi- continuous reactors; in continuous reactors – PFTR, CSTR; and Combination of reactors.	8
UNIT III	Design of unconventional BioreactorsDesign and analysis of Packed Bed Bioreactor, Airlift Bioreactor, Hollow Fiber Bioreactor, Plant Cell Bioreactor, Mammalian Cell Bioreactor and bioreactors for solid state fermentation.	8
UNIT IV	Introduction to Residence Time DistributionResidence Time Theory; Residence Time Models: Ideal Reactors and Reactor Combinations, Hydrodynamic Models; Drawbacks of Classical RTD measurements; Transient behavior in bioreactor. Capital Cost Estimating: Components Of Capital Cost, Working Capital; Estimating Purchased Equipment Costs; Estimating Installed Costs.	8

- 1. Panda, Tapobrata. Bioreactors: Analysis and Design. Tata McGraw Hill, 2011.
- 2. Moser, Anton, Bioprocess Technology: Kinetics and Reactors. Springer Verlag, 1988.
- 3. Bailey J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, 2nd ed., McGraw Hill, 1986
- 4. Lee, James M. Biochemical Engineering, PHI, USA.

- 5. Atkinson, Handbook of Bioreactors, Blanch, H.W. Clark, D.S. Biochemical Engineering, Marcel Decker, 1999.
- 6. Max S. Peters and Klaus, D. Timmerhaus, Plant Design and Economics for Chemical Engineers, 4th Edition, McGraw Hill Book Co., 1991.
- 7. M. V. Joshi and V.V. Mahajani, Process Equipment Design, 3rd Edition, Macmillan India Ltd., 2000.
- 8. Michael R. Ladisch, Bioseparations Engineering: Principles, Practice and Economics.

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY BE-516

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	0

Objective: The course helps in recollecting some basic but very important concepts in microbiology and biotechnology with advanced knowledge of various recent developments at industrial level in microbiology and biotechnology.

UNIT I	Types of microorganisms	8
	Structure and genetic system of viruses and bacteria, Actinomycetes, fungi,	
	Cyanobacteria and algae, Criteria used in the classification of microorganisms:	
	morphology, cytology, genetics, host specialization, serology.	
UNIT II	Modern trends in microbial production	8
	Modern trends in microbial production of bioplastics (PHB, PHA),	
	bioinsectices (thuricide), biopolymer (dextran, alginate, Xanthan, pullulan),	
	Biofertilizers (Nitrogen fixer/Phosphate Solubilizers/siderophore producers),	
	Single Cell Protein, micro algae as - food - feed and colourant. Potential	
	Application of Spirulina arthrospira as a nutritional and therapeutic	
	supplement in health management.	
UNIT III	Pharmaceutical Microbiology	8
	Antibiotics and synthetic antimicrobial agents, Mechanism of action of	
	antibiotics (inhibitors of cell wall synthesis, nucleic acid and protein	
	synthesis). Bacterial resistance to antibiotics. Microbial contamination and	
	spoilage of pharmaceutical products, Good Manufacturing Practices (GMP)	
	and Good Laboratory Practices (GLP) in pharmaceutical industry.	
UNIT IV	Industrial microbes and their products	8
	A brief idea about the products obtained from microbes, biology of industrial	
	microorganisms such as Streptomyces, yeasts, SpirulinaandPenicillium, Basic	
	principle of fermentation technology, Overview of fermenter design, factors	
	governing the chemical and biological aspects in a bioreactor, commercial	
	production of penicillin, ethanol, vinegar, vitamin B12, Protease, citric acid	
	and glutamic acid from microbial sources-production of commercially useful	
	non-microbial products produced through recombinant microbes.	

Books recommended

- 1. Prescott, Harley and Klevin; Microbiology; 2 nded.
- 2. Microbiology, Peleczar, TMH Publication
- 3. Pirt SJ, "Principles of Microbe and Cell Cultivation
- 4. Murray Moo-Young, Comprehensive Biotechnology, Vol. 1& III.
- 5. Microbes & Fermentation, A. Lel and Kotlers Richard J. Mickey, Oriffin publication
- 6. Industrial Fermentations, Leland, N.Y. Chemical publishers.

7. Prescott and Dunn's- Industrial Microbiology, 4th, ed. Biotechnology series, Rrhym, Reed & Weinheim, Verlag-chemie.